283 research outputs found

    Incremental learning of skills in a task-parameterized Gaussian Mixture Model

    Get PDF
    The final publication is available at link.springer.comProgramming by demonstration techniques facilitate the programming of robots. Some of them allow the generalization of tasks through parameters, although they require new training when trajectories different from the ones used to estimate the model need to be added. One of the ways to re-train a robot is by incremental learning, which supplies additional information of the task and does not require teaching the whole task again. The present study proposes three techniques to add trajectories to a previously estimated task-parameterized Gaussian mixture model. The first technique estimates a new model by accumulating the new trajectory and the set of trajectories generated using the previous model. The second technique permits adding to the parameters of the existent model those obtained for the new trajectories. The third one updates the model parameters by running a modified version of the Expectation-Maximization algorithm, with the information of the new trajectories. The techniques were evaluated in a simulated task and a real one, and they showed better performance than that of the existent model.Peer ReviewedPostprint (author's final draft

    Modelling the air-gap field strength of electric machines to improve performance of haptic mechanisms

    Get PDF
    The air-gap of electro-magnetic (EM) actuators determines key operating parameters such as their ability to generate force. In haptic devices these parameters are not optimised for the conditions typically seen in operation and include the heat produced in the air-gap, the volume of the air-gap, and the intensity and direction of the magnetic field. The relationship between these parameters is complex thus design decisions are difficult to make. This paper considers the role of the radial magnetic field in cylindrical electric motors, a type often used in haptic devices. Two models are derived and compared with experimental measurements. The first model is a closed form solution, the second is a classic Poisson solution to Ampere's equation. These models are shown to be valid for making more general design decisions in relation to haptic actuators, and in particular allow an evaluation of the trade off between the volume of the air-gap, the resulting radial magnetic field and hence heat generated and the resulting forces

    Von Bezold assimilation effect reverses in stereoscopic conditions

    Get PDF
    Lightness contrast and lightness assimilation are opposite phenomena: in contrast, grey targets appear darker when bordering bright surfaces (inducers) rather than dark ones; in assimilation, the opposite occurs. The question is: which visual process favours the occurrence of one phenomenon over the other? Researchers provided three answers to this question. The first asserts that both phenomena are caused by peripheral processes; the second attributes their occurrence to central processes; and the third claims that contrast involves central processes, whilst assimilation involves peripheral ones. To test these hypotheses, an experiment on an IT system equipped with goggles for stereo vision was run. Observers were asked to evaluate the lightness of a grey target, and two variables were systematically manipulated: (i) the apparent distance of the inducers; and (ii) brightness of the inducers. The retinal stimulation was kept constant throughout, so that the peripheral processes remained the same. The results show that the lightness of the target depends on both variables. As the retinal stimulation was kept constant, we conclude that central mechanisms are involved in both lightness contrast and lightness assimilation

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Response of red deer stags (cervus elaphus) to playback of harsh versus common roars

    Get PDF
    Red deer stags (Cervus elaphus) give two distinct types of roars during the breeding season, the “common roar” and the “harsh roar.” Harsh roars are more frequent during contexts of intense competition, and characterized by a set of features that increase their perceptual salience, suggesting that they signal heightened arousal. While common roars have been shown to encode size information and mediate both male competition and female choice, to our knowledge, the specific function of harsh roars during male competition has not yet been studied. Here, we investigate the hypothesis that the specific structure of male harsh roars signals high arousal to competitors. We contrast the behavioral responses of free ranging, harem-holding stags to the playback of harsh roars from an unfamiliar competitor with their response to the playback of common roars from the same animal. We show that males react less strongly to sequences of harsh roars than to sequences of common roars, possibly because they are reluctant to escalate conflicts with highly motivated and threatening unfamiliar males in the absence of visual information. While future work should investigate the response of stags to harsh roars from familiar opponents, our observations remain consistent with the hypothesis that harsh roars may signal motivation during male competition, and illustrate how intrasexual selection can contribute to the diversification of male vocal signals

    Dynamic Integration of Reward and Stimulus Information in Perceptual Decision-Making

    Get PDF
    In perceptual decision-making, ideal decision-makers should bias their choices toward alternatives associated with larger rewards, and the extent of the bias should decrease as stimulus sensitivity increases. When responses must be made at different times after stimulus onset, stimulus sensitivity grows with time from zero to a final asymptotic level. Are decision makers able to produce responses that are more biased if they are made soon after stimulus onset, but less biased if they are made after more evidence has been accumulated? If so, how close to optimal can they come in doing this, and how might their performance be achieved mechanistically? We report an experiment in which the payoff for each alternative is indicated before stimulus onset. Processing time is controlled by a “go” cue occurring at different times post stimulus onset, requiring a response within msec. Reward bias does start high when processing time is short and decreases as sensitivity increases, leveling off at a non-zero value. However, the degree of bias is sub-optimal for shorter processing times. We present a mechanistic account of participants' performance within the framework of the leaky competing accumulator model [1], in which accumulators for each alternative accumulate noisy information subject to leakage and mutual inhibition. The leveling off of accuracy is attributed to mutual inhibition between the accumulators, allowing the accumulator that gathers the most evidence early in a trial to suppress the alternative. Three ways reward might affect decision making in this framework are considered. One of the three, in which reward affects the starting point of the evidence accumulation process, is consistent with the qualitative pattern of the observed reward bias effect, while the other two are not. Incorporating this assumption into the leaky competing accumulator model, we are able to provide close quantitative fits to individual participant data

    Role of oxidative stress and intracellular glutathione in the sensitivity to apoptosis induced by proteasome inhibitor in thyroid cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The proteasome inhibitor bortezomib has shown impressive clinical activity alone and in combination with conventional and other novel agents for the treatment of multiple myeloma (MM) and some solid cancers. Although bortezomib is known to be a selective proteasome inhibitor, the downstream mechanisms of cytotoxicity and drug resistance are poorly understood.</p> <p>Methods</p> <p>Proteasome activity, intracellular glutathione (GSH) and ROS levels, as well as activities of GSH synthesis enzymes were measured using spectrophotometric methods. Cell death was analyzed using flow cytometry and caspase activity assay. The expression level of GSH synthesis enzymes were measured using real-time RT-PCR.</p> <p>Results</p> <p>At concentrations that effectively inhibited proteasome activity, bortezomib induced apoptosis in FRO cells, but not in ARO cells. Bortezomib elevated the amount of glutathione (GSH) and the treatment with bortezomib increased the level of mRNA for GCL, a rate-limiting enzyme in glutathione synthesis. Furthermore, depletion of GSH increases apoptosis induced by bortezomib, in contrast, repletion of GSH decreases bortezomib-mediated cell death.</p> <p>Conclusion</p> <p>GSH protects cells from proteasome inhibition-induced oxidative stress and glutathione-dependent redox system might play an important role in the sensitivity to proteasome inhibition-induced apoptosis.</p

    Environmental noise reduces predation rate in an aquatic invertebrate

    Get PDF
    Noise is one of a wide range of disturbances associated with human activities that have been shown to have detrimental impacts on a wide range of species, from montane regions to the deep marine environment. Noise may also have community-level impacts via predator–prey interactions, thus jeopardising the stability of trophic networks. However, the impact of noise on freshwater ecosystems is largely unknown. Even more so is the case of insects, despite their crucial role in trophic networks. Here, we study the impact of underwater noise on the predatory functional response of damselfly larvae. We compared the feeding rates of larvae under anthropogenic noise, natural noise, and silent conditions. Our results suggest that underwater noise (pooling the effects of anthropogenic noise and natural noise) decreases the feeding rate of damselflies significantly compared to relatively silent conditions. In particular, natural noise increased the handling time significantly compared to the silent treatment, thus reducing the feeding rate. Unexpectedly, feeding rates under anthropogenic noise were not reduced significantly compared to silent conditions. This study suggests that noise per se may not necessarily have negative impacts on trophic interactions. Instead, the impact of noise on feeding rates may be explained by the presence of nonlinearities in acoustic signals, which may be more abundant in natural compared to anthropogenic noise. We conclude by highlighting the importance of studying a diversity of types of acoustic pollution, and encourage further work regarding trophic interactions with insects using a functional response approach

    Transmission Characteristics of Primate Vocalizations: Implications for Acoustic Analyses

    Get PDF
    Acoustic analyses have become a staple method in field studies of animal vocal communication, with nearly all investigations using computer-based approaches to extract specific features from sounds. Various algorithms can be used to extract acoustic variables that may then be related to variables such as individual identity, context or reproductive state. Habitat structure and recording conditions, however, have strong effects on the acoustic structure of sound signals. The purpose of this study was to identify which acoustic parameters reliably describe features of propagated sounds. We conducted broadcast experiments and examined the influence of habitat type, transmission height, and re-recording distance on the validity (deviation from the original sound) and reliability (variation within identical recording conditions) of acoustic features of different primate call types. Validity and reliability varied independently of each other in relation to habitat, transmission height, and re-recording distance, and depended strongly on the call type. The smallest deviations from the original sounds were obtained by a visually-controlled calculation of the fundamental frequency. Start- and end parameters of a sound were most susceptible to degradation in the environment. Because the recording conditions can have appreciable effects on acoustic parameters, it is advisable to validate the extraction method of acoustic variables from recordings over longer distances before using them in acoustic analyses
    corecore